A non-threshold region-specific method for detecting rare variants in complex diseases
نویسندگان
چکیده
A region-specific method, NTR (non-threshold rare) variant detection method, was developed-it does not use the threshold for defining rare variants and accounts for directions of effects. NTR also considers linkage disequilibrium within the region and accommodates common and rare variants simultaneously. NTR weighs variants according to minor allele frequency and odds ratio to combine the effects of common and rare variants on disease occurrence into a single score and provides a test statistic to assess the significance of the score. In the simulations, under different effect sizes, the power of NTR increased as the effect size increased, and the type I error of our method was controlled well. Moreover, NTR was compared with several other existing methods, including the combined multivariate and collapsing method (CMC), weighted sum statistic method (WSS), sequence kernel association test (SKAT), and its modification, SKAT-O. NTR yields comparable or better power in simulations, especially when the effects of linkage disequilibrium between variants were at least moderate. In an analysis of diabetic nephropathy data, NTR detected more confirmed disease-related genes than the other aforementioned methods. NTR can thus be used as a complementary tool to help in dissecting the etiology of complex diseases.
منابع مشابه
Utilizing mutual information for detecting rare and common variants associated with a categorical trait
Background. Genome-wide association studies have succeeded in detecting novel common variants which associate with complex diseases. As a result of the fast changes in next generation sequencing technology, a large number of sequencing data are generated, which offers great opportunities to identify rare variants that could explain a larger proportion of missing heritability. Many effective and...
متن کاملAn Effective Method for Detecting Y-chromosome Specific Sequences of Circulating Fetal DNA in Maternal Plasma During the First-trimester
Background and Aims: New advances in the use of cell-free fetal DNA (cffDNA) in maternal plasma of pregnant women has provided the possibility of applying cffDNA in prenatal diagnosis as a non-invasive method. One of the applications of prenatal diagnosis is fetal gender determination. Early prenatal determination of fetal sex is required for pregnant women at risk of X-linked and some endocrin...
متن کاملPoor Man’s 1000 Genome Project: Recent Human Population Expansion Confounds the Detection of Disease Alleles in 7,098 Complete Mitochondrial Genomes
Rapid growth of the human population has caused the accumulation of rare genetic variants that may play a role in the origin of genetic diseases. However, it is challenging to identify those rare variants responsible for specific diseases without genetic data from an extraordinarily large population sample. Here we focused on the accumulated data from the human mitochondrial (mt) genome sequenc...
متن کاملAn optimum projection and noise reduction approach for detecting rare and common variants associated with complex diseases.
BACKGROUND Despite the thrilling advances in identifying gene variants that influence common diseases, most of the heritable risk for many common diseases still remains unidentified. One of the possible reasons for this missing heritability is that the genome-wide association study (GWAS) approaches have been focusing on common rather than rare single nucleotide variants (SNVs). Consequently, th...
متن کاملA Novel Approach for the Simultaneous Analysis of Common and Rare Variants in Complex Traits
Genome-wide association studies (GWAS) have been successful in detecting common genetic variants underlying common traits and diseases. Despite the GWAS success stories, the percent trait variance explained by GWAS signals, the so called "missing heritability" has been, at best, modest. Also, the predictive power of common variants identified by GWAS has not been encouraging. Given these observ...
متن کامل